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ABSTRACT

Cross-site scripting (XSS) is the most common vulnerability class in
web applications over the last decade. Much research attention has
focused on building exploit mitigation defenses for this problem, but
no technique provides adequate protection in the face of advanced
attacks. One technique that bypasses XSSmitigations is the scriptless
attack: a content injection technique that uses (among other options)
CSS andHTML injection to infiltrate data. In studying this technique
and others, we realized that the common property among the
exploitation of all content injection vulnerabilities, including not
just XSS and scriptless attacks, but also command injections and
several others, is an unintended context switch in the victim program’s
parsing engine that is caused by untrusted user input.

In this paper, we propose Context-Auditor, a novel technique
that leverages this insight to identify content injection vulnerabilities
ranging from XSS to scriptless attacks and command injections. We
implemented Context-Auditor as a general solution to content
injection exploit detection problem in the form of a flexible, stand-
alone detectionmodule.We deployed instances of Context-Auditor
as (1) a browser plugin, (2) a web proxy (3) a web server plugin,
and (4) as a wrapper around potentially-injectable system endpoints.
BecauseContext-Auditor targets the root cause of content injection
exploitation (and, more specifically for the purpose of our prototype,
XSS exploitation, scriptless exploitation, and command injection),
our evaluation results demonstrate that Context-Auditor can
identify and block content injection exploits that modern defenses
cannot while maintaining low throughput overhead and avoiding
false positives.
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1 INTRODUCTION

Though rich, interactive,Web 2.0 applications are critical in enabling
the modern web, they are also a critical attack vector on the Internet.
Web application vulnerabilities have significantly contributed to the
financial loss from cybersecurity issues over the past years. Among
vulnerabilities in web applications, cross-site scripting (XSS) is the
single most common type of vulnerability in the past two years
according to Bugcrowd [21] and Hackerone reports [28]. In fact,
since the release of the initial US-CERT Advisory in 2000 [64], XSS
is among the most critical web application security threats every
year, consistently appearing in “worst of” lists, such as the OWASP
Top 10 [49] and MITRE top 25 [46].

Research into XSS prevention andmitigation has continued since
XSS was first discovered. Existing approaches attempt to statically
identify XSS vulnerabilities in server-side code [32, 36, 68], analyze
the use of server-side sanitization functions [18, 42], filter out
JavaScript code on the server side [24, 65], or attempt to detect
the presence of vulnerabilities from the client’s viewpoint [41, 45].
Yet, XSS vulnerabilities continue to manifest in web applications. A
different class of solutions attempt to mitigate XSS exploits rather
than detect the underlying vulnerabilities. These solutions include
XSS filters in browsers (e.g., NoScript for Firefox [26]), Content
Security Policy (CSP) [5], web application firewalls (e.g., ModSecurity [13]),
and server-side HTML sanitizers [31]. These mitigations are widely
adopted in practice (as we discuss in Section 2.2), however research
has shown that it is possible to bypass these defenses.

One particularly interesting bypass of XSS mitigations, called
scriptless attacks, generalizes the concept of XSS beyond the injection
of JavaScript code [30]. Scriptless attacks inject data (such as CSS,
HTML 5, SVG, and font files) to compromise the security of web
applications, which, as a result, allows attackers to steal sensitive
information, even in a restricted environment without JavaScript
execution. Prior solutions that check if untrusted user input is used
in sensitive output functions (e.g., echo() or system()) [33, 36, 40], or
identify the mixing of code (HTML) and data (JavaScript) in the
same channel [24], do not work for scriptless attacks, as the notion
of code-data mixing is not fine-grained enough.

These exploit techniques inspired us to examine the root cause of
XSS and scriptless attacks: Web applications embed into an HTML
page untrusted user input as pure data, such as strings and text,
with the intent that no part of the untrusted user input shall be
interpreted by the parser as non-data. However, this important
developer-intent is lost once the HTML code is generated and sent
to the browser: client-side parsers must re-discover the meaning of
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every part of the page by parsing the HTML response. In carrying
out XSS exploits, attackers exploit this loss of information and
mislead client-side parsers to transition from HTML parsing to
JavaScript or CSS parsing when parsing the user input, which
violates the developer’s original intent. For example, in an XSS exploit,
an untrusted user input may cause a browser to transition from
parsing plain text in HTML to parsing JavaScript code with a
<script> tag. We term these context transitions in a parser context
switches, where “context” refers to the functionality of the token
being parsed. In fact, we argue that unintended context switches
are the root cause of a series of vulnerabilities including (among
others) XSS, scriptless attacks, command injection, SQL injection,
XML injection, and template injection. We refer to them as content
injection vulnerabilities throughout this paper.

Our insight is that, because these vulnerabilities share a common
root cause, exploits against them can be mitigated using a common
approach. In this paper, we introduce Context-Auditor, a novel,
general technique that detects content injection exploits by identifying
unintended context switches, caused by untrusted input, during
parsing. This idea is inspired by Stock et al. [61], who used context
switches (tokenization-based) in the JavaScript parser to detect
DOM-based XSS exploits using a taint-tracking browser and by
other string-based [35] and taint-based [58] injection prevention
methods. Context-Auditor expands these ideas, generalizing
these concepts to the broader category of content injection exploits.

We implemented multiple prototypes of Context-Auditor in
various forms—including a shell wrapper, an nginx module, a web
proxy, and a Chrome extension—to detect content injection exploits
in shell commands, HTML, CSS, and JavaScript. We tested our
prototypes on reputable testing suites and comprehensive real-
world data sets, where Context-Auditor successfully detected
and blocked all reflected XSS, scriptless, and command injection
exploits in a number of web applications. Additionally, Context-
Auditor demonstrated negligible false positive rate in a live crawl
of the Alexa top-1000 websites.

Overall, this paper makes the following contributions:

• We reformulate the problem of defending against command
injections, XSS, and scriptless attacks as a content injectionmitigation
problem, and we focus on the root cause of content injection
exploitation, which is untrusted user input triggering a context
switch in parsers.

• Webuild a customparsermodel that supports HTML, CSS, JavaScript,
and Bash scripts (and is extensible to other languages). Context-
Auditor uses this model to identify context switches caused
by untrusted user input, which indicates the exploitation of a
content injection vulnerability.

• We demonstrate that Context-Auditor can mitigate exploits
that state-of-the-art XSS mitigation techniques cannot, with low
false positive rates and reasonable throughput overhead.

In the spirit of open science, we will open source Context-
Auditor and publish the evaluation data and configurations to
guarantee experiment reproducibility [7].

2 BACKGROUND

In this section, we provide an overview of content injection exploits
that Context-Auditor aims to address along with an overview of
existing mitigation techniques.

2.1 Content Injection Vulnerabilities

Aweb application that allows the usage of user datawith unintended
semantics in generating dynamic content is susceptible to content
injection vulnerabilities. Therefore, an attacker can compromise the
security of the web application by sending an exploit that leverages
this vulnerability to perform developer unintended actions. For
instance, if user input is used to construct a string that is then passed
to a shell script command, an adversary can construct an exploit
using shell script control characters, such as semicolon, to escape
out of the current command and execute arbitrary commands. In
another case, an attacker may alter the intended semantics of a web
page or execute arbitrary JavaScript code if a web application uses
user input to construct HTML response without proper sanitization.
Web-based exploits.We classify content injection exploits that
manipulate the structure of anHTML response asweb-based exploits,
which are categorized into two groups: scripting exploits and scriptless
exploits. Listing 1 is an example of vulnerable PHP code with three
web-based content injection vulnerabilities (and DOM-based XSS)
in different contexts (HTML, JavaScript, and CSS), and we will refer
to it throughout the paper.

• Scripting exploits. Scripting exploits are a traditional and well-
known attack vector that involve the injection ofmalicious JavaScript
code into web pages. An example of scripting exploits is a cross-
site scripting (XSS) exploit. Two of the vulnerabilities in the PHP
code in Listing 1 can be exploited with scripting exploits. Both
are reflected XSS vulnerabilities: One is in the HTML context
on Line 21, and the other is in the JavaScript context at Line 17.
The first vulnerability on Line 21 can be exploited by a classic
HTML-context XSS exploit: <script>alert(’injection’);</script>.
The second vulnerability on Line 17 can be exploited by a JavaScript-
context XSS exploit: Hi"; alert(’injection’);"There.

• Scriptless exploits. Scriptless exploits are another type of content
injection exploits where attackers embed into the DOM tree
non-scripting elements (e.g., images or style sheets) that violate
security policies in browsers, most notably, CORS policies [30].
Listing 1 has a vulnerability on Line 5 that can be exploited
with a scriptless content injection exploit. Attackers can inject
a malicious CSS context exploit, such as the example exploit in
Listing 2, to leak the characters used in the secret Cross-Site
Request Forgery (CSRF) token.

Non-web-based exploits. Content injection exploits happen not
only in client-side web languages, but also in many other contexts,
such as SQL queries and shell commands. For the exec function
(Line 26 of Listing 1): the shell command includes a user-controlled
stringwhich enables an attacker to execute arbitrary shell commands:
sending Auditor; rm userinfo.txt to the web application would cause
it to remove the userinfo.txt file.
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1 <html>
2 <body>
3 <style>
4 body{
5 background-color: <?php echo($_GET["color"])?>
6 }
7 </style>
8 <form action="index.php">
9 background Color :</td><td>
10 <input type="name" name="color" />
11 <input type="submit" value="Change Color" />
12 <input type="hidden"
13 name="CSRFToken" value="SECRET">
14 </form>
15 <script>
16 document.write("Username is: ");
17 var str = "<?php echo($_GET["id"])?>" ;
18 document.write("<text>"+str+"</text>");
19 </script>
20 <h2> You were searching for:
21 '<?php echo($_GET['term']) ?>'
22 </h2>
23 Here is the result:
24 <?php
25 $command= 'cat userinfo.txt | grep '. $_GET['term'];
26 echo(exec($command)); ?>
27 </body>
28 </html>

Listing 1: PHP code with three content injection

vulnerabilities (Line 5, Line 17, and Line 21 represent CSS,

JavaScript and HTML contexts respectively) in the server-

side HTML response, one DOM-based XSS vulnerability on

Line 18 and a content injection vulnerability in the form of

command injection on Line 26.

1 "} a[href*='A'] {
2 background: url(attacker.com?A); } ...
3 a[href*='S'] {
4 background: url(attacker.com?S); } ...
5 a[href*='Z'] {
6 background: url(attacker.com?Z);}
7 a[href*='A'][href*='A']{
8 background: url(attacker.com?AA); } ...
9 a[href*='S'][href*='E']{
10 background: url(attacker.com?SE); } ...
11 a[href*='S'][href*='E'][href*='C'][href*='R']{
12 background: url(attacker.com?SECR); }...

Listing 2: An example CSS context exploit used to exploit the

scriptless content injection vulnerability shown in Listing 1.

2.2 Mitigations of Content Injection Exploits

Generally, there are four types of mitigations for web-based content
injection exploits (although thus far they have mostly focused on
XSS exploits), and all are bypassable [40]:
Browser-based XSS Filters. Some browsers have built-in XSS
detection and mitigation mechanisms to block malicious-looking
HTML requests and responses. NoScript [26] (for Firefox) is a
powerful browser XSS filter that is widely used. There is also a
No-Script Chrome extension [67]; it could be used as a temporary
XSS mitigation measure after the retirement of XSS-Auditor [19]
from the Chrome browser. Detection capability of XSS filters is
often limited to pattern matching solutions that are defined by

1 <input id="RecaptchaClientUrl-"

value="//portswigger-labs.net/xss/xss.js" />↩→
2

Listing 3: An HTML tag injection proposed by Hayes [51]:

This exploit miss-uses a JavaScript gadget in a vulnerable

JavaScript code and bypasses nonce-based CSP policies.

regular expressions and they might become ineffective in the face
of new exploits.
HTML Sanitizers. HTML sanitizers (e.g., DOMPurify [31]) are
libraries used by web application developers to sanitize HTML text
and filter (potentiallymalicious) content. The black-listing approach
of sanitizers is usually very conservative, as characters are sanitized
without a thorough understanding of their actual impact on the
semantics of a web page. For instance, not all < characters inside
HTML text are potentially harmful and need filtering. However,
sending a string containing < character to DOMPurify, results in
filtering of < and all of its following characters; although the original
string might not eventually cause any security violation in the web
application. Unsurprisingly, sanitization approaches cannot cover
all possible content injection exploits (e.g., DOMPurify does not
provide sanitization for JavaScript and CSS).
Content Security Policy (CSP). CSP is a white-listing mechanism
that adds directives into HTTP headers or meta tags, which specify
(among other things) the legitimate source of external resources
that a web page can embed. In this way CSP, when used correctly,
can mitigate many XSS exploits. While all modern browsers support
CSP, it is not deployed properly by most web applications in the
wild, and also previous work has shown it to be insufficient to
prevent all XSS exploits [23]. The application of strict CSP policies,
however, does not guarantee the security of a web application in
case the JavaScript code is already vulnerable. Hayes [51] demonstrated
a bypass of a nonce-based CSP policy for a vulnerable JavaScript
code with a flow from an HTML tag’s attribute to a sensitive sink.
Similar to the exploitation of JavaScript gadgets [40], an attacker
can exploit such vulnerabilities via injection of specially-crafted
HTML tags into a webpage: JavaScript gadgets misuse existing
pieces of JavaScript code in the web application to achieve their
aim (alike return-oriented programming [54]). In this vulnerable
script, the attacker can modify the source of an existing script tag
(that has already been protected by nonce-based CSP tokens) to
the attribute value of an injected input tag shown in Listing 3 and
execute arbitrary JavaScript code. Our context switching-based
analysis prevents such HTML tag injections; on the contrary, CSP
prevents the injection of a limited set of HTML tags.
Web Application Firewall (WAF). WAFs (e.g., ModSecurity [13])
attempt to detect malicious web requests and prevent them from
reaching back-end web applications. WAFs need to be manually
configuredwith a comprehensive set of rules or directives, comprehensibility
of which correlates withWAFS detection capability. To demonstrate
this, we configured the ModSecurity with the OWASP core rule set
(CRS) [15], and it failed to detect a simple injection inside JavaScript
code (Listing 4) against the web page of Listing 1. WAFs are also
ineffective in preventing JavaScript gadget exploitations similar
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1 GET /?id=Admin";alert(1);" HTTP/1.1
2 Host: vulnerable.com

Listing 4: An HTTP request towards an nginx web server

with ModSecurity enabled via OWASP core rule set (CRS).

to Listing 3 since WAFs’ directives do not usually consider such
HTML tag injections malicious.

3 OVERVIEW

The failure of state-of-the-art content injectionmitigation techniques
(Section 2.2) is due to prior approaches not addressing the root
cause of context switching vulnerabilities. Parsers (e.g., HTML
parser, JavaScript parser, shell parser, etc.) are the entities that
eventually parse an exploit, yet they do not know if a context
switch is triggered by attacker content or was developer intended.
Therefore, inContext-Auditor, we suggest a fundamentally different
approach: we model parsers using automata and detect any context
switching caused by attacker-controlled input as a potential content
injection exploit. Before discussing the details our context-switching-
based detection approach, we first highlight the deficiencies of state-
of-the-art techniques (motivating us to introduce a new detection
approach) and the context switching concept. These prerequisites
provide a high-level operational model of Context-Auditor.

3.1 Motivation

State-of-the-art mitigations attempt to identify characteristics of
common exploits as malicious: NoScript and XSS-Auditor operate
based on regular expressionmatching. Similarly,ModSecurity searches
for known malicious-looking directives inside HTTP traffic, and
DOMPurify identifies known potentially harmful characters or
patterns. CSP only allows the inclusion of external files from the
same domain as the origin. These black-listing (browser filters,
ModSecurity, DOMPurify) orwhite-listing (CSP) approaches operate
based on previously known patterns among content injection exploits,
whichmakes themunprepared for unfamiliar exploits. Still, detecting
the known patterns requires preparation of extensive regular expressions
or a comprehensive set of directives, which is an error-prone and
tedious task. More specifically, we argue that many mitigation
techniques do not provide a comprehensive detection approach
against content injection exploits because they fail to address content
switches caused by untrusted input.

Bypass of ModSecurity (Listing 4) occurs as a consequence of
context switching from the double-quoted string context in the
JavaScript parser to after assignment, then to statement contexts.
State-of-the-art techniques cannot detect context switches due to
user-controlled data in web applications. Therefore, we recommend
a fundamentally new content injection exploit detection approach
in Context-Auditor that uses the context switching concept to
detect content injections.

3.2 Context Switching

We define context switching as when a parsing engine changes
parsing context (i.e., from one context to the next) based on the
input. The parsing context is defined by the grammar rules of the

specific language. For instance, consider the following grammar
rule in ECMA262 (JavaScript) specification used to interpret double-
quoted string literal. StringLiteral and DoubleStringCharacters are
non-terminals in the language and " is a control character deliminating
DoubleStringCharacters token from double-quote token:

StringLiteral :: "DoubleStringCharacters"

DoubleStringCharacter :: SourceCharacter but not one of " or \

A web application developer writes code that generates dynamic
HTML and JavaScript content with implicit assumptions about
the parsing of it as a DoubleStringCharacter token. However, if user-
controlled input is used to generate a DoubleStringCharacter token
without sanitization, it can violate the developer’s intent by including
a double-quote character. This violation constitutes a potential
content injection exploit. We use this developer unintended context
switching to detect a content injection exploit. We extend this
concept to other languages that are parsing dynamic content of
web applications.

Our focus on context switching as the root cause of content
injection exploits allows us to provide a comprehensive and flexible
detection technique. InContext-Auditorwemodel context switching
for HTML, JavaScript, CSS, and Bash languages, and this model
can be used as a stand-alone detection module with fine-grained
content injection detection coverage.

3.3 Context-Auditor Overview

At a high-level,Context-Auditor operates as a stand-alone detection
module as depicted in Figure 2. The high-level operational model
of Context-Auditor is as follows:
Input. Context-Auditor analyzes the content generated by web

applications to determine the impact of attacker-controlled
input on parsing. The input to a web application takes the
form of an HTTP request, and generated content includes
HTTP responses or dispatched shell commands. As its input,
Context-Auditor consumes the application’s generated
content and the location of untrusted (attacker-influenced)
bytes in that content. If not given knowledge of untrusted
bytes, we can infer the location of untrusted data in the
generated content by identifying where content from the
HTTP request is used verbatim inside the generated content1.

Parsing. We designed automata to model context switches in the
form of state transitions. These automata are made of states
called parsing states: A parsing state includes syntactical
and lexical information about the current character, which
can determine the type of the token or the statement being
parsed. These automata are also aware of the exact location
in the nested structure of the language it is parsing. The
parser is used to process the application output, and its
design is detailed in Section 4.

Detection. The Context-Auditor automata parse the output
content (HTTP response or shell command) using its parsing
model from the first character of the output until the last
character of untrusted (tainted) data. If a context switch
occurs when parsing an untrusted data character in the
application output, then Context-Auditor has detected an

1We discuss the implications of this choice on Context-Auditor’s efficacy in
Sections 3.4 and 7.
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Figure 1: A simplified graph of context switching in a browser parser while parsing HTML input. If the untrusted input is

admin, it does not trigger any context switch (parsing state is Quoted Literal for all characters of the input) and is therefore benign.

However, if the untrusted input is admin"; document.write(user);, this triggers a context switch at edge 56′ (from Quoted Literal state

to Stmn. End state) and is therefore malicious.

Figure 2: Context-Auditor is a detection black-box: given

a specific content and byte offsets of untrusted input, it will

return if the content is safe or is a content injection exploit.

exploit. If no context switches occur as a result of untrusted
data characters, then the untrusted input is benign.

Mitigation. When Context-Auditor detects an exploit, the user
can choose to block the output from reaching its destination
(i.e., does not deliver the HTTP response or does not allow
the shell command to execute). This step can differ based on
the user’s deployment decision, and we discuss it in Section 5.

Figure 1 demonstrates the core idea of Context-Auditor, including
simplified parsing automata of HTML, CSS, and JavaScript, along
with the transitions between them. The bottom of Figure 1 has
sampleweb application output (content input toContext-Auditor),
and the arrows ⇑ indicate context switching of the parser on the
index of the byte of the input (the transition on the edge of the
parsing automata are labeled with the same index). Figure 1 also
demonstrates two different scenarios. In the first scenario, the

untrusted user input is admin (purple underline of the input), and the
untrusted user input is identified based on the purple HTTP request.
This input remains in the Quoted Literal state and does not cause any
context switching, therefore it is benign. In the second scenario, the
untrusted user input is admin"; document.write(user); (red overline
of the input), and the untrusted user input is identified based on
the red HTTP request. This input triggers a context switch at byte
56 (edge 56

′
) to Stmt. End, and because this context switch occurs

while parsing untrusted user input Context-Auditor will detect
this as malicious. As demonstrated, if untrusted user input does
not cause a context switch (as is the case of the first scenario with
admin as the untrusted user input in Figure 1). A similar situation
exists when parsing shell commands: if untrusted user input is used
as an argument, then it will not cause a context switch. In this
way, Context-Auditor uses context switching to detect content
injection exploits.

3.4 Vulnerability Model

Identifying where untrusted input occurs inside web application’s
dynamic content (e.g., HTML or shell commands), without knowledge
of the server-side code, is a fundamentally difficult problem [22],
and orthogonal to the detection of vulnerabilities by Context-
Auditor (user-input offset is an input to Context-Auditor, as
shown in Figure 2). Therefore, we outsource this orthogonal task
to a module called User-Input Detector. Deployment of Context-
Auditor inside an operational environment requires a User-Input
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Figure 3: User-Input Detector identifies the location of

untrusted input insideHTTP response and propagates inputs

to Context-Auditor for further analysis.

Detectormodule in place, which in its simplest form performs string
matching. To demonstrate the generality of Context-Auditor,
we also deployed a heuristic from Buyukkayhan et al.’s work [22]
as the User-Input Detector module in Section 6 (experiment E4):
this heuristic identifies sensitive keywords of a payload and their
counterpart inside an HTML response and then attempts to extend
the matching offsets.

As an example of deploying an instance of Context-Auditor as
a detection module, we developed a prototype in which untrusted
input (coming from the HTTP request) used verbatim in generated
HTML content are identified and propagated to Context-Auditor
for further analysis (Figure 3). In another deployment, User-Input
Detector is a wrapper around /bin/sh and invokesContext-Auditor
in cases that are susceptible to command injection exploits. These
deployments have several implications on the types of vulnerabilities
that can be protected against by our prototype. The prototype
can prevent exploits against non-stored content injection exploits:
including reflected XSS, reflected scriptless exploits, and the vast
majority of command injection exploits. If injected content is stored
(for example, in a database) and later retrieved, our link of untrusted
user input is lost. Without some additional tracking of this input
(such as taint tracking and propagation), the prototype is not able
to determine whether or not parsing context switches are caused
by untrusted input.

The focus on reflected content injection allowsContext-Auditor
to operate without any knowledge about or modification to the
underlyingweb application or web browser, and only concerns itself
with the HTTP request and the content generated as a result of it.
This allowsContext-Auditor to be deployed inmany configurations.
For instance, similar to trusted-types [66] that uses DOMPurify
to sanitize inputs to sensitive page’s sinks (e.g. document.write and
innerHTML_setter), we could integrateContext-Auditor in a browser
to detect and limit unwanted context switching in sensitive sinks.
Theoretically, it could also be deployed inside frameworks that
detect stored XSS because these frameworks can track untrusted
user input.

3.5 Threat Model

We designed our solution to protect against a sophisticated attacker.
We assume that our attacker is aware of a content injection vulnerability
in a target web application. The attacker can modify the content
of any request parameter and send the request to the target web
application to trigger the content injection vulnerability.

3.6 Comparison with Current Mitigations

Table 1 demonstrates the shortcomings of priorweb-basedmitigations
against content injection exploits: XSS-Auditor only protects against
conventional XSS vectors and does not support any exploit from
HTML, CSS, or JavaScript contexts [61]. NoScript supports these
three languages and prevents scriptless exploits via CSP rules;
however its regular expressions might be ineffective in the face of
new exploitation techniques or complex nested JavaScript exploits.
DOMPurify is mainly focused on sanitization of HTML context
and as mentioned in Section 2.2 it could be conservative in input
sanitization. CSP is mostly concerned with inclusion of files or tags
from external domains, and it cannot protect against injection of
JavaScript and CSS code into existing JavaScript code. ModSecurity
is limited to its directives, and it can be insufficient to prevent simple
injections inside JavaScript code, scriptless exploits, and many
HTML injections. However, Context-Auditor provides a fine-
grained content injection exploit detection solution for scripting,
scriptless, and command injection exploits (in HTML, JavaScript,
and CSS contexts).

For command injection exploits, we referred to code and data
separation solutions (e.g., SMask [33]) or taint-enhanced prevention
policies [69]. They provide a content injection measure against
trivial XSS and command injection, and both required some knowledge
of server-side deployment. As discussed in Section 3.4, despite
server-side (SMask and taint-enhanced policies), client-side (XSS-
Auditor, NoScript, CSP, and DOMPurify), and WAF (ModSecurity)
mitigation techniques that are tied to a specific location, Context-
Auditor has a flexible deployment. is also advantageous for mobile
browsers because they lag behind in implementation of similar
security measures proposed for desktop browsers [44].

4 BUILDING THE MODEL

The parsing engine, in the form of an automaton, is the core of
Context-Auditor. This automaton uses its state transitions to
identify context switches, which is the key feature used to detect
content injection exploits.We construct this automaton bymanually
analyzing HTML, JavaScript, CSS, and Bash languages.

4.1 Modeling Web Languages Parsing

To detect content injection exploits insideHTML content, we require
an automaton to track parsing states of all characters in that content.
If we design an automatonwith precise parsing states encompassing
syntactical and semantic information about the underlying token
or character in each location, we would be able to detect a broad
spectrum of content injection exploits that could be inserted into
any location insideHTML content. Such automatonwill consequently
help us in the detection of exploits with various granularities: we
can detect coarse-grained exploits that cause a language transition
inside HTML content, and we can also detect fine-grained (and
short) exploits that only insert additional functionality into existing
code. Furthermore, unlike prior approaches, this technique requires
no prior knowledge of exploits.

To design an automaton with the state transition requirements
which supports three major web languages (HTML5, JavaScript,
and CSS) and the Bash language, we studied specifications of these
languages: specifically, we analyzed the lexical analysis stage from
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Table 1: Comparison of XSS mitigation techniques based on their detection capabilities and their applicability to mobile

browsers. Missing detection capabilities are marked by numbers. 1: Depends on policy. 2: Pattern-matching-based. 3: Cannot

detect complex nested JavaScript code. 4: It deploys CSP rules to prevent scriptless exploits. 5: Limited tags. 6: cannot detect

content injected to CSS. In case of mobile support, we focused on whether the mitigation techniques introduced/considered

any measures for content injection exploits that are sent from a mobile browser or not.

Tool
Context-based Content Injection Exploit Mitigation

Command

Injection

Mobile

Support

Location

XSS JS HTML CSS

XSS-Auditor ✓ ✗ ✗ ✗ ✗ ✗ client

NoScript ✓ Partial 2,3 Partial 2,4 Partial 2,4 ✗ ✓ client

DOMPurify ✓ ✗ ✓ ✗ ✗ ✓ client

CSP Partial 1 ✗ Partial 5 Partial 6 ✗ ✓ client

ModSecurity ✓ Partial 2 Partial 2 ✗ ✗ ✗ proxy

SMask ✓ ✗ ✗ ✗ ✓ ✗ server

Taint-enhanced policies ✓ ✗ ✗ ✗ ✓ ✗ server

Context-Auditor ✓ ✓ ✓ ✓ ✓ applicable flexible

Figure 4: Possible deployment locations of all aforementioned XSS mitigations (XSS-Auditor, NoScript, CSP, ModSecurity, and

WAF) and Context-Auditor in an HTTP client and server communication model.

theHTML 5 specification [9] (which is referred to as the tokenization
stage), the grammar rules from the ECMAScript specification ECMA-
262 [2], a tokenization procedure introduced byW3C inCSS language
specification [6], and the Bash language manual [4]. Considering
the specifications, we realized that our candidate automaton must
meet the following requirements:

(1) The next state of the automaton should be based on the
current state and input character (or lexical token).

(2) The automaton should be able to track history to support
nested structures, branches, arrays, objects, tags, etc.

(3)The automaton should support revisiting. According toHTML 5
parsing specification, the parser needs to re-consume a character
under certain conditions [9]. Revisiting is also necessary for parsing
CSS and JavaScript, as for each of them, certain characters in
individual states might be the indication of either a new token
or a new statement. In this case, the character must be re-analyzed
in another state later which requires the revisiting property.

Based on these constraints, we design the automaton inContext-
Auditor as a two-way finite pushdown automaton (2PDA): A
pushdown automaton (PDA) is a finite-state automaton (FSA) with a
stack, and a 2PDA complements PDA by supporting revisiting input
characters that are already consumed. We designed our automaton
in a similar fashion to the way that browsers parse an HTML

document: the HTML parser is the primary parser shipped with
any modern browser: It takes as input bytes representing an HTML
document and starts parsing these bytes character by character.
In the course of parsing, the HTML parser distinguishes among
different tokens and special characters and even different languages
in that document. For instance, while parsing a specific byte index, it
determines whether the index is inside an opening tag, an attribute
name/value or either inside a closing tag. The existence of special
tags marking the beginning of style sheets or embedded scripts (e.g.
<script> or <style> tags) is an indication of a new language for the
HTML parser; it will invoke the corresponding parser (which is also
included by the browser) to parse the embedded content between
the opening and closing tags.

Our automaton starts parsing the HTML document from the first
input character and then it moves forward character by character,
while moving along the sequence, it has detailed information about
the underlying language, token, and the specific language statement
being parsed. We refer to such information as context and we
use parsing states to reflect this concept inside an automaton. We
manually constructed the HTML 5 parsing automaton following
tokenization stage in the HTML 5 specification [9]. It tracks the
HTML tokens and tags for each character in the HTML sequence
via parsing states’ information. It also supports transition into states
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Figure 5: The communication diagram of a Context-

Auditor-equipped HTTP client-server model to prevent

command injection exploits.

that are related to CSS and JavaScript language contexts by reading a
<script> or <style> tag. We also manually constructed parsing states
related to CSS and JavaScript languages by referring to the related
specification and grammar rules respectively (W3C tokenization
specification for CSS [6] and ECMA-262 [2]). Figure 7 in Appendix
shows a simplified representation of the 2PDA.

4.2 Modeling Shell Command Parsing

Command injection exploits in web applications are the result
of dynamic generation of shell commands using untrusted input.
Similar to content injection detection for web languages, command
injection exploits are also detectable via identifying context switching.
Tomodel shell command parsing, we focused on identifying different
tokens in a shell command. We determine whether the current
character is part of a command or operand, or if it is a special
character which would change the type of a statement. The parser
also considers the hierarchical structure of a command to keep track
of quotes, back-ticks, parentheses, braces, etc. Figure 8 in Appendix
shows a simplified 2PDA of the shell parsing automaton.

5 IMPLEMENTATION

As discussed in Section 3.2, our context switching-based content
injection detection method provides us (among other benefits)
with the advantage of flexible deployment. Despite dedication of
other state-of-the-art content injection mitigation techniques to a
specific location in the HTTP client–server communication model,
as shown in Figure 4,Context-Auditor can be deployed anywhere
along thismodel. In our experimentswe deployedContext-Auditor
in four different operational models:
Context-Auditor ShellWrapper: Figure 5 shows howContext-
Auditor works on server side as a module to detect command
injection exploits. This module is a wrapper around /bin/sh that
implements the functionality of User-Input Detector: It generates
byte offsets marking reflections of HTTP request parameters in a
series of commands sent to /bin/sh and invokesContext-Auditor’s
shell parser module with the input commands and byte offsets.

Figure 6: The communication diagram of a Context-

Auditor-equipped HTTP client-server model to prevent

injections inside a HTTP response.

Context-AuditornginxPlugin: Figure 6 illustrates howContext-
Auditor works in an environment with nginx as the HTTP front-
end, Apache httpd (or other web applications hosted by Apache
httpd) as the service back-end, and Context-Auditor as a stand-
alone detection module. The nginx plugin acts as an HTTP proxy
and detects untrusted input by identifying any input data from
the HTTP request in the HTML response. Then, nginx forwards
the intercepted data to Context-Auditor, and, after receiving the
detection results from Context-Auditor, the nginx plugin filters
and blocks all responses that are content injection exploits.
Context-AuditorWebProxy:We integratedContext-Auditor
with mitmproxy [10]. This instance identifies byte offsets of user-
controlled data in HTTP responses and invokes Context-Auditor
for parsing analysis of the response. If a potential content injection
exploit is detected, then Context-Auditor blocks the response.
Context-AuditorChromeExtension:Wemodified an existing
Chrome extension called Tamper [11], which allows us to intercept
Chrome’s HTTP requests and responses. From the request and
response, we identify untrusted input and pass this to Context-
Auditor to detect content injection exploits. Due to technical
limitations of the Tamper extension, we cannot block responses
and log them instead.

6 EVALUATION

In evaluatingContext-Auditor, we sought to answer the following
research questions:
Q1. Effectiveness. How many content injection exploits in HTML,
CSS, JavaScript, and shell scripts can Context-Auditor detect,
and how many exploits does Context-Auditor miss?
Q2. Practicality.DoesContext-Auditor exhibit a low false positive
rate so that it can be deployed in real-world settings without raising
excessive false alarms?
Q3. Efficiency. Does Context-Auditor exhibit a low runtime
overhead in all evaluated scenarios to justify the deployment of it
in real-world settings?
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6.1 Experiment Desgin

We designed seven experiments under different scenarios with
different data sets. Two experiments (E1 & E2) focus on the true
positive rates of Context-Auditor in detecting XSS and scriptless
exploits. To stress the generality of our technique, we also designed
an experiment (E3) demonstrating the effectiveness of Context-
Auditor in detection of command injection exploits. E4 showcases
the prevalence of the context switching phenomenon in a public
data set of XSS exploits. Another three experiments (E5, E6, and E7)
focus on showing the practicality (false positive rates) and efficiency
(runtime overhead) of Context-Auditor in real-world settings.
Table 2 shows an overview of these experiments.

6.2 Data Sets

We used both well-known public data sets and hand-crafted data
sets in our experiments. Public data sets include the PortSwigger
cross-site scripting cheat-sheet (E1) [63], Buyukkayhan et al.’s [22]
data set of reflected server-side XSS exploits (E4), and the OWASP
XSS cheat-sheet (E7) [3]. These are all ground-truth content injection
exploits that should be detected and blocked by a perfect XSS
defense.We ranContext-Auditor on these data sets to evaluate its
effectiveness. Additionally, as discussed in Section 2.2 and Section 3.6,
we provide hand-crafted XSS exploits that bypass several state-of-
the-art XSS defenses but can be detected by Context-Auditor,
which we will not reiterate in this section. Because of the lack
of publicly available data sets, we also built our own data sets of
command injection exploits (E3) and web pages that are free of
content injection exploits based on known CVEs and a crawl of top
Alexa websites (E5), respectively.

6.3 E1: Detecting Web-based Content Injection

Exploits

To evaluate the effectiveness of Context-Auditor against real-
world web-based content injection exploits, we ran our prototype
against public data sets of XSS and scriptless exploits fromPortSwigger
XSS cheat-sheet [63]. Portswigger website provides URLs via link
to vulnerable web applications for every exploit; we used both
vulnerable web applications and exploits from the website in the
experiment. We selected reflected XSS (including event handlers,
consuming tags, file upload, restricted characters, frameworks,
protocols, special tags, other useful attributes, encoding, obfuscation,
and WAF bypass categories) and scriptless exploits specified to
work on the Google Chrome browser. The exploits also cover both
HTML and JavaScript contexts. Then, we use Chrome to access
each URL, proxy the requests through the Context-Auditor Web
Proxy (as described in Section 5), and report the number of detected
exploits. Reflected exploits constitute the majority of exploits in the
Portswigger dataset; therefore, we configured the experimentation
environment via a User-Input Detection module that identifies
request parameters used verbatim inside their consequent HTML
response. Context-Auditor demonstrated 100% detection rate:
It successfully detected all 242 XSS exploits and all 25 scriptless
exploits.

6.4 E2: Detecting XSS Exploits Generated by

W3af

In this experiment, we deployed Context-Auditor as an nginx
plugin (Figure 6) and tested if it can prevent XSS exploits coming
from attackers. We first hosted under nginx 32 web applications
provided by Firing Range2 [8] that have reflected XSS vulnerabilities.
The content injection vulnerabilities in Firing Range may occur
in all three contexts, which are HTML, CSS, and JavaScript. We
then ran the open-source w3af web vulnerability scanner [14]
against these web applications, and w3af successfully detected XSS
vulnerabilities and generated XSS exploits on the 32 web pages.
Then, we reset the deployedweb applications, enabled theContext-
Auditor nginx Plugin (as described in Section 5), and re-ran w3af
against these applications. Context-Auditor correctly detected
and blocked all requests with exploit payload generated by w3af,
without blocking any benign requests. As a result, w3af did not
report any XSS vulnerabilities. This shows that Context-Auditor
can detect and block realistic XSS exploits.

6.5 E3: Detecting Command Injection Exploits

Due to the lack of existing data set of web applicationswith command
injection vulnerabilities, we manually scanned all CVEs to build a
data set that comprises PHPweb applicationswith known command
injection vulnerabilities. As dictated by the threat model (Section 3),
Context-Auditor only supports the situation where the exploit
payload is sent as a URL parameter and used verbatim in a shell
command. From these, we sampled three vulnerableweb applications.
We additionally checked a vulnerability report published by RIPS [1]
vulnerability scanner’s website and added another vulnerable application
to our list.With these fourweb applications, we verified the effectiveness
of the Context-Auditor Shell Wrapper (as described in Section 5)
to detect command injection exploits when it is deployed in a
scenario similar to Figure 5.Context-Auditor successfully detected
content injection exploits for all of these applications. Table 3 shows
the list of these vulnerable web applications and the detection
capability of Context-Auditor.

The command injection vulnerability in the PHP File Manager

resides inside a backdoor that allows an attacker to execute arbitrary
OS commands, which is an intended malice. Because malicious
intention in aweb application is outside the threatmodel of Context-
Auditor, whenever an attacker executes a single token command
(such aswhomai or ls),Context-Auditor does not detect it. However,
Context-Auditor can block any command with more than one
token sent to the web application.

6.6 E4: Measuring the Likelihood of Context

Switching in Exploits of a Public Data Set

Context switching concept is the core idea of Context-Auditor, to
realize the importance of it, we analyzed its prevalence on a public
data set of XSS exploits. We used a data set created by Buyukkayhan
et al. [22]: They performed a longitudinal study on reflected server-
side XSS exploits from XSSED [25] and OPENBUGBOUNTY [12]
data sets and consolidated those in their data set. This data set

2Firing Range is a web application test suite that contains a wide range of intentional
vulnerabilities. We used version 0.48 in this experiment.
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Table 2: Details of each experiment in the evaluation. “Standalone” means Context-Auditor is used as a standalone Python

library. The other four types of deployment are described in Section 5.

ID Description Category Deployment Data set

Related

Question

E1 XSS and scriptless exploits detection web web proxy PortSwigger XSS cheat-sheet [63] Q1

E2 XSS detection, comparing against w3af web nginx plugin Firing Range [8] Q1

E3 Command injection exploits detection shell shell wrapper web applications with known command injection CVEs Q1

E4 Context switching probability in a public data set web standalone data set from [22] including exploits from xxsed [25] and obb [12] Q1

E5 False alarms and runtime overhead web web proxy Alexa Top 1,000 websites Q2 and Q3

E6 False alarms web web proxy WordPress and human-generated traffic Q2

E7 Runtime overhead web
nginx plugin

hand-crafted data set Q3web proxy
Chrome extension

Table 3: Context-Auditor’s command injection detection

capability. 1: Denotes multi-token commands.

CVE Application Version Detection

CVE-2015-5958 PHP File Manager 0.9.8 Partial 1

CVE-2010-4278 Pandora FMS 3.1 ✓

CVE-2008-6669 nweb2fax 0.2.7 ✓

0-day by RIPS [1] Oscommerce 2.3.4 ✓

has an attack table including data from actual exploits; such data
involves payloads and exploited HTML responses. However, each
payload could have several reflections in its HTML response; all
of those might not lead to actual exploits. They implemented a
greedy heuristic to identify these candidate reflections (user-input
detector module) and then used a series of methods to extract a
single working exploit from each response. Their heuristics was
a proper user-input detector module, therefore we reached out to
the authors and gained access to the heuristic’s code. Afterwards,
we ran an analysis on Buyukkayhan et al.’s [22] data set: For each
payload and HTML response in the data set, we ran them through
the heuristic and received a list of candidate exploit offsets. Context
switching idea claims that at least one of these candidates triggers
a context switching; therefore, we aimed to verify this claim in
this experiment. In this regard, we analyzed the parsing of 170,667
entries of the data set. Context-Auditor successfully flagged
148,778 (87.17%) of those payloads that trigger a state transition
in an HTML response; but, it did not report any state transition
for 21,889 of the entries (12.82%) in the data set. We manually
investigated some of these payloads to understand their nature.
The inability of Context-Auditor in handling such exploits is for
the following reasons:
(1) Context-Auditor is a research prototype to demonstrate the
practicality of the context switching concept in detecting content
injection exploits. Sincewe havemanually designed and implemented
our parsing automata, it is prone to parsing errors and incompleteness.
We devoted significant engineering effort to improve its coverage

and detection capability, however, there is still room for the implementation
of methods to cover more corner cases and inputs via syntactical
errors. (2) Some payloads do not trigger a context switching in any
of the offsets. Such cases might occur due to the reflection of an
exploit inside an HTML attribute value such as onclick, or it might
lead to a second-order XSS exploitation. Our current implementation
of Context-Auditor could detect exploits that force the HTML
parser to transfer (from attribute name state) into attribute value

state; but it does not support interpretation of JavaScript context
inside certain attribute value states (e.g. onclick’s value). However,
this is not an inherent limitation of our approach, and it is a matter
of engineering effort. In the case of second-order XSS exploits, if
the exploit reflects inside the assignment part of a JavaScript Quoted
Literal for instance, it does not trigger a context switching at the
time of parsing. But, it might lead to exploitation at runtime, which
Context-Auditor fails to detect. Such exploitations are not in
the scope of our experimentation setup, we could theoretically
detect a few of those by deploying Context-Auditor at sensitive
JavaScript sinks similar to Trusted Types [66] and defining injection
detection policies (similar to [50]).

6.7 E5: Performance Overhead and False

Positive on Top Alexa Websites

To evaluate the performance overhead and false positive rate of
Context-Auditor in real-world settings, we performed a crawl
of the top 1,000 Alexa websites [17]. For each URL we crawled,
we followed two random links (links with at least one parameter)
and measured the average loading time (over two runs) for the
random links. Since Context-Auditor is not invoked for the main
URLs (due to lack of URL parameters), we only considered the
loading time overhead of random links and excluded the overhead
of main links. Additionally, we monitored any potential false alarm
triggered by Context-Auditor in this experiment. Similar to
E1, we use Chrome to access each URL and proxy the requests
throughmitmproxy (as described in Section 5). Since the experiment
involved benign traffic, we used a User-Input Detector module that
recognizes request parameters used verbatim inside their consequent
HTML response, and Context-Auditor is invoked if the length
of those reflections is at least three characters. In case there are
multiple reflections of the URL parameters inside theHTML response,
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we ran Context-Auditor for up to five reflections of each URL
parameter value.

Since mitmproxy imposes significant overhead itself, we first
crawled the random links in an experimentation setupwithmitmproxy
(Context-Auditor disabled) deployed, then we revisited the links
in an environment with both mitmproxy and Context-Auditor
enabled. We filter out any request timed out (with a timeout of
20ms per request). Also, we did not involve links with negative
loading time overhead in our loading time measurements. Our
measurements demonstrate an average of 4.7 seconds in loading
time overhead while visiting random links that involve an average
of three URL parameters. Impressively, Context-Auditor only
flagged one of the visited random links as malicious. The loading
time is caused to the following reasons: (1) In this experiment
Context-Auditor analyzes up to five reflections for each request
parameter value. For each, it parses the HTML response from
the first character, which causes excessive delays. (2) The parsing
automata cannot correctly handle some syntax errors or parsing
of JavaScript statements not being deliminated by semicolons. We
implemented a monitoring algorithm (timing-based) that detects
such cases; it then adjusts the JavaScript code (by semicolon insertion)
or forces the parser into particular states, all of which impose delays.

6.8 E6: Measuring False Positives on a Blog Site

Context-Auditor may theoretically produce false positives when
user input causes context switches in the dynamic content of a web
application, and this action is part of the expected functionality
of the application. An example is a blogging website where users
may embed JavaScript code into their blog posts. To understand the
severeness of this scenario in a real-world setting, we performed
a study on the WordPress platform, a widely used blogging web
application, with a set of 10 human testers. We first deployed a
WordPress instance on a server and put it behind a Context-
Auditorweb proxy. Then, given a unique user account and the URL
to our WordPress instance, we allotted each tester 10 minutes and
asked them to freely useWordPress and report any unresponsiveness
of the application to us. Testers could create, add, delete, or modify
any blog posts and input any data, including JavaScript code or
CSS.

Throughout the experiment, testers did not report any case
of unresponsiveness. Finally, a total of 1,680 HTTP request and
response pairs were collected and analyzed by Context-Auditor.
Context-Auditor did not report any content injection exploit,
which means it did not raise any false alarms. We believe this
is because normal WordPress users rarely need to insert custom
JavaScript or CSS code into their blog posts despite the support in
WordPress. AdvancedWordPress userswho need to insert JavaScript
or CSS code into their blog posts may choose to ignore Context-
Auditorwarnings temporarily. Therefore, we argue that Context-
Auditor can be applied in real world without causing excessive
false alarms. In the unlikely case that a tester might have attempted
to exploit WordPress, we further verified that these HTTP requests
and responses do not contain any content injection exploits. So
Context-Auditor also did not cause any false negatives in this
experiment.

6.9 E7: Measuring Runtime Overhead

To evaluate the performance overhead of Context-Auditor, we
used the Seleniumweb driver [16] to request webpages.We extracted
a list of content injection exploits from the OWASP XSS cheat-
sheet [3] categorizing them based on context. Then, we chose a
proper vulnerable web page from the Firing Range application [8],
for each exploit category and crafted corresponding links as the
input to Selenium driver. We measured the time of fetching a
webpage (1) withoutContext-Auditor, (2) withContext-Auditor
as an nginx plugin, (3) with Context-Auditor as a proxy, and
(4) with Context-Auditor as a browser extension. For the nginx
plugin and the proxy, Context-Auditor returns a 404 response
codewhen it detects amalicious request. Thismeans that, depending
on the deployment scenario, the latency to load the HTTP request
may in fact, be faster for malicious requests. In case of the browser
extension, the extension does not filter malicious responses, instead
it only logs requests/responses including a content injection exploit.

Table 4 has the performance measurements of this evaluation.
In the best case for benign requests, the Context-Auditor nginx
module, added 4ms (27%) of overhead. The worst case, theContext-
Auditor extension, added 19ms (127%) of overhead. The best case
of malicious requests, the Context-Auditor nginx module, added
1ms (6%) of overhead, while the extension added 13ms (81%) of
overhead in the worst case. As all implementations of Context-
Auditor are proof-of-concept research prototypes (Context-Auditor
is implemented in Python), we did not focus on optimizing latency.

7 LIMITATIONS

As we showed in our evaluation, Context-Auditor is a new
approach to defend against content injection exploits. However, it
does have a number of limitations, which we discuss in this section.
False positives. There was one false positive in our experiments,
however some circumstances could cause more: For instance, if a
blogging application (that allows blogging in raw HTML) reflects
the user’s newly created post (which is sent in as anHTTP parameter)
in its response, Context-Auditor might report an exploit despite
this behavior being legitimate and intended by thewebsite’s developers.
This is not as common: blogging platforms typically send an HTTP
redirect to the HTTP post request rather than reflecting the update
itself, in which case there would be no false positive as the request
will not be contained in the response. However, even if the platform
does not use a redirect (and actually reflects the blog post), and
Context-Auditor blocks the response, it will only block the response
that includes the reflection: in this case, the submitted request will
still be evaluated by the web application and the behavior would
be correct (i.e., the blog post would appear).
Second-order content injections.Wedefine second-order exploits
as content injection exploits that do not trigger any parsing state
transitions, yet still execute JavaScript. DOM-basedXSS vulnerabilities
are an example of second-order exploits: The content of an untrusted
JavaScript string is interpreted—during JavaScript execution—as
JavaScript code. These types of vulnerabilities are also called client-
side XSS vulnerabilities, because the root cause of the vulnerability
exists in the JavaScript code of the web page. In other words, there
is no way to change the server-side code to fix the vulnerability
(e.g., when untrusted input is used as an argument of eval function).
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Table 4: False negative and true positive rate of Context-Auditor with benign and malicious sets, along with performance

analysis in terms of Latency (loading time in milliseconds) for the two lists, in four cases: without Context-Auditor or with

any of three instantiations of Context-Auditor (nginx module, web proxy and Chrome extension).

Case

Loading time

without CA

CA loading time

for nginx

CA loading time

for proxy

CA loading time

for extension

Benign Requests 16ms 20ms 17ms 35ms

Malicious Requests 15ms 16ms 18ms 28ms

Listing 1 contains a client-side XSS vulnerability on Line 18. The
malicious input for the id parameter of the (JavaScript context)
string literal <script>alert(1)</script>, will not cause a context switch.
However, at runtime the browser’s JavaScript execution engine
will send the str variable (which is now untrusted data) to the
document.write function, where it will interpret this string as HTML
(thus causing a second-order content injection, where this parsing
of the untrusted data by document.writewill cause a context switch in
the HTML parser). Unfortunately, Context-Auditor in its current
deployment cannot detect such exploits. Mitigating second-order
(and, perhaps 𝑛-order) content injection exploits would require
modifying the browser to track the untrusted data (e.g., via taint
propagation), similar to the approach proposed by Stock et al. [61].
Steffens et al. [59] have released a taint-aware Chromium engine
and a minimal extension, and we can integrate Context-Auditor
with those to analyze second-order content injection exploits. Steffens
et al. [59]’s tool defines a function called DOMXSSFinderReport,
which is invoked along with each detection of a tainted flow into a
sensitive client-side sink. We can further call Context-Auditor
inside this function to perform parsing analysis on suspicious offsets
of the inputs and raise flags if necessary.
Transformations of user input. Server-side code or client-side
scripts may sometimes perform transformations on user-controlled
input, yet our current deployment of Context-Auditor supports
cases where input strings are reflected verbatim in response data.
However, using a different User-Input Detector module such as the
heuristic from Buyukkayhan et al. [22]’s work that allows a few
character mismatches between a payload and a candidate offset in
the HTML response, Context-Auditor could detect more cases of
context-switching. The tracking of input through transformations
is a generally complex problem. There are approaches, such as
dynamic taint tracking, that could be used to track such transformations.
However, as mentioned in Section 3.4, the task of user input tracking
is orthogonal to the core concept of Context-Auditor. Any increase
in the ability of untrusted input tracking, regardless of the techniques
used, would increase the space of content injection vulnerability
instances that Context-Auditor can protect.
Stored content injection. As discussed in Section 3.4, Context-
Auditor only supports non-stored content injections. This is due
to Context-Auditor’s inability to track untrusted input through
data stores used by an application. This is an analogous issue to
the transformation of user input: whereas that problem deals with
the tracking of input through transformations, this must tackle
the tracking of input through storage. One potential direction to
address this limitation is through the use of proxies between the

web application and its data stores: a very similar approach to
SQL parsing analysis by libinjection [27], except that having a
parsing automaton for query languages (an extension of Context-
Auditor) we do not need to instrument web applications’ source
code, and we can delegate the injection detection task to a proxy.
This proxy must implement a way of relating stored content and its
corresponding HTTP request content (similar to how the /bin/sh

wrapper is handled for shell injection) so that it could inform
Context-Auditor of content containing untrusted input. This
represents a significant engineering burden, but would expand
Context-Auditor to yet additional content injection vulnerability
classes.
Syntax errors.Context-Auditor is a research prototypemanually
built based on languages’ grammars and specifications. We faced
issues while parsing malformed HTML and JavaScript codes, which
is the cause of some parsing failures in E4 (Section 6).We investigated
numerous parsing errors and failures, resolving many of those. For
instance, malformed JavaScript code or developers’ negligence to
deliminate statements via a semicolon could create syntax errors
or indefinite parsing loops. Therefore, we implemented monitoring
code to identify such cases and force the parser to Syntax_Error or
Automatic_Semicolon_Insertion stateswhen necessary. Anothermonitoring
code modifies the JavaScript parser’s input according to automatic
semicolon insertion rules of ECMA-262 [2] specification when parser
enters Automatic_Semicolon_Insertion state.
Overhead. As mentioned above, our current implementation of
Context-Auditor can not handle some syntactical errors properly;
we also made some simplification assumptions for implementing
our automaton, both of which might lead to infinite loops while
parsing malformed inputs. Our monitoring code detects infinite
loops via a timing constraint of 5 seconds on the last update of the
current_state’s value of the automaton and forces the automaton
into the parsing_error state. We first must find an optimum value
for the timing constraint’s threshold to decrease the automaton’s
overhead. Then, some simplifications of the automaton cause parsing
errors in the face ofmalformed inputs and impose additional overhead.
The simplifications were only for ease of design and implementation
(fewer state transitions), and we can substitute those simplifications
with more accurate state transitions in the future to reduce parsing
errors and overhead.
Browser quirks. Attackers may utilize browser-specific parsing
quirks when carrying out exploits. These quirks are notoriously
difficult to model, and Context-Auditor’s parsing model certainly
does not handle all of them. However, Context-Auditor will
report an exploit as long as the attacker’s input triggers either a



Context-Auditor: Context-sensitive Content Injection Mitigation RAID 2022, October 26–28, 2022, Limassol, Cyprus

parsing context transition or a parsing error. In the presence of
an attack utilizing a browser parsing quirk, the former case would
represent Context-Auditor correctly handling the quirk, and the
latter would represent the common case of Context-Auditor
not handling the quirk. In either case, the attack will be detected.
Of course, some browser quirks that do not trigger parsing errors
almost certainly exist. Context-Auditor would not be able to
detect the exploits, and this is a limitation of our approach3.
XS-Leak. Deployment of Context-Auditor in blocking mode
might raise the XS-leak issue: In some instances, an attacker might
infer the state of a victim at a target site by sending requests via
specially-crafted inputs [62]. Here, Context-Auditor blocks the
response since it can not distinguish between offsets that originate
from an attacker and the ones that are already part of the HTML
content. We can limit the XS-leak issue via the integration of taint-
tracking approaches and only flagging context switching cases that
are triggered by untrusted user input.

8 RELATEDWORK

There are many research projects on detecting XSS exploits, such as
sanitization [18, 42], policy enforcement [69], code-data separation [24],
moving target defense [48], and other server-side [20, 34, 36, 43]
and client-side [41, 45] mitigations. However, none of them tackles
the root cause of content injection vulnerabilities. As our paper
is based on context-sensitive parsing, we will only discuss papers
with relevant approaches in the rest of this section. Stock et al.’s
approach [61] in detection of DOM-based XSS vulnerabilities is the
closest to our idea. They focus on the tokenization process with an
observation that benign user input should only be tokenized into
literal tokens, and any non-literal token coming from user input
indicates an exploit. Context-Auditor generalizes their insight
into the root cause of all content injection vulnerabilities and build
a generic defense against such exploits. Prokhorenko et al. propose
the context-centric injection detection model to identify exploits
including XSS and SQL injection [52]. Compared to our automaton,
their view of context is more coarse-grained. Their model is also
tied to server-side PHP code.

ScriptGard focuses on correct placement of sanitizer functions in
server-side code considering the context that a sanitizer function is
used in [55]. XSS-GUARD [20] uses parsing analysis to determine
authorized scripts in an HTTP response that are intended by its
developers. It introduces the concept of “Shadow Web Pages” and
forces the application to follow the same execution path for both
untrusted and benign input (by building parse trees and equivalency
checks). Although their idea seems similar to Context-Auditor,
the parsing state in our work exhibits a broader view by looking
deeper into the syntactical structure of all supported languages.
Moreover, our solution supports a wide range of content injection
exploits instead ofmerely XSS exploits. Mitigation of content injection
vulnerabilities is also beneficial to limit compromises caused by
recent JavaScript-based vulnerabilities: Such as vulnerabilities in
postMessage event handlers [60], client-side CSRF [38], prototype
pollution [37], XS-leak [39, 62], and browse-based side-channels [57].

3In fact, this is a fundamental limitation that man-in-the-middle components cannot
always correctly infer all behaviors of client or server side components [53].

Taint-tracking had also been used to help detect and prevent
limited content injection exploitations (SQL injection, XSS, etc.) [56,
65]. Positive [29, 55] and negative [47, 69] taint-tracking trace
safe data or untrusted inputs into sensitive sinks, respectively, and
examine whether they satisfy particular security policies. Positive
taint-tracking requires domain knowledge and rewriting of the
source code to track sources of safe data throughout the program, it
is the opposite of our core idea in Context-Auditor (which relies
on the context switching concept and is not limited to the source
code or environment settings). Negative taint-tracking, however,
could assist Context-Auditor and provide offsets of suspicious
inputs to our content injection detectionmodule;Context-Auditor
can further analyze those offsets and report any context switching
that occurred while parsing the offsets.

9 CONCLUSION

For too long, the research community has focused on mitigating
XSS exploitation by blocking or detecting JavaScript execution. We
believe that a shift in thinking is necessary: by broadening our
scope to content injection, in terms of both vulnerabilities and
exploits, we can finally address the root cause of content injection
exploits: untrusted input that causes context switch in a parser.
By modeling the parsing process, we can detect these exploits.
This paper describes Context-Auditor, a generalized detection
mechanism for content injection exploits.WhileContext-Auditor
is capable of detecting awide range of injection vectors, our prototype
supports injections in HTML, CSS, JavaScript, and shell commands.
Our evaluation showed thatContext-Auditor is effective, performant,
and unintrusive. Context-Auditor represents the first step to
mitigating first-order webpage-based content injection exploits
that can be applied on the server side, in a proxy, or on the client
side. While Context-Auditor has pushed forward the state-of-the-
art in content injection mitigation, more research remains to extend
this idea to second-order content injection vulnerabilities—or even
beyond the web.
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10 APPENDIX
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Figure 7: A simplified 2PDA that represents state transitions between HTML, CSS, and JavaScript. HTML_Start is the starting
state. Script_Start and CSS_Start represent the states where first characters of JavaScript and CSS code are consumed by the

automaton, respectively. The automaton transitions back to HTML_Start from JavaScript or CSS states whenever it consumes a

sequence of characters that represent an end tag in the corresponding language.
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Figure 8: A simplified 2PDA that parses shell scripts. SH_Start is the starting state. Orange edges demonstrate the revisiting

functionality.
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